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Abstract

The oscillation in time series can be represented by counts of axis-

-
B

Y
e

crossings in the series and its differences. These counts are called

e I
(it s
P

higher order crossings and display a monotone property whose rate of in-

P crease discriminates between processes. Only very few of these counts

;: are needed for effective discrimination as shown by plots of higher order

‘f crossings obtained from real and simulated data.

S

X Key Words: Oscillation, Spectral, Probability limits, Axis-crossings,

- Stationary.
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1. Irntroduction

The purpose of this ﬁote is to introduce a graphical device useful
as a measure of similarity or as a goodness of fit criterion for hypothe-
sized time series models. It is based on the actual oscillation observed
in time series as depicted by axis-crossings and higher order crossings.
Higher order crossings (HOC) are axis-crossings of differenced time series
and are closely linked to the spectral content of the series. In fact
under the Gaussian assumption, to which we shall adhere, HOC determine
the finite dimensional distributions up to a scale parameter given that
the mean is zero. The main advantage of HOC is that they are casily ob-

tained from an observed series and that only XE£X4£SK of them are needed,

)
i~

as the discriminatory power in HOC usually diminishes with their order.
Higher order crossings in time series discrimination were discussed
in Kedem and Slud (1981), (1982) where a certain goodness of fit criterion
is suggested. Here however the emphasis is on a graphical device rather
than a single test statistic. This graphical method may be shown useful
in answering the question "Does a given time series oscillate as a certain

hypothesized model?” Some examples with real and simulated data demon—

strate the use and potential of this method. .
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2. Definition and Properties of HOC
Let {Zt}, t=0,%¥1,..., be a zero mean stationary Gaussian process
with correlation function pj and spectral distribution function F. The

higher order crossings of order k, D is the number of axis~crossings

k,N*
by

and Vth = V(Vk_lzt). Since VO is the identity operator, D1 N is the

actual number of axis-crossings by Zl""’ZN'
A more precise definition is constructed in terms of

k-1
1, v Z
xik) = t

=0
’ k=1,2,...
o, otherwise

and

(k) (k)
L9 - L, X #X.]
t

0, otherwise.

1]

L}
)

We define formally the higher order crossings of order k by

(k) (k)
D A"+ e+ d

k,n

In practice we only deal with finite series and some care must be
taken in regard to the differencing of finitely long records. FEach time
a finite series is differenced an observation is lost so that if k higher
crossings are desired the time index t=1 1is given to the k'th or a

later observation and we shall follow this rule.

g, T et
w
AN )

':-'- Cuw S, e v s e e
Ly "-‘:'-‘E‘vn;'-?‘fs:';'oi‘c(!’o"! s '.‘t-:‘-‘i.\\ ~




bl o oy Saltdieg el il e Mo Seh s S 2t S A el ol i i~ gl i b~ bt sl - abp-

Consider the following cxample. Suppose the series Zt is given by

-1 40 -3 .6 -.3 -.8 1.2 -1.3 -.4 -l1.1,

I d . .
n order to derive the first three HOC D1,6’ D2,6’ D3,6 we have

t 1 2 3 4 5 6

Z -1 4 - . 6 - .3 - 1.2 -1.3 -.4 ~-1.1
1 0 1 1 0 0 1 0 0 0

vz 1.4 - .7 .9 - .9 =5 2.0 -2.5 .9 - .7

x(2) 1 0o 1 o o0 1 0o 1 0
2

Voz -2.1 1.6 -1.8 4 2.5 -=4.5 3.4 -1.6

X(3) 0 1 0 1 1 0 1 0

and Dl’6==2, D2,6 =4, D3,6==4 and we say that Dl’ D2, D3 were derived

from a series of length 6. It is seen that counting symbol changes in the
clipped binary series is equivalent to counting axis-crossings in the cor-

responding series. Thus Dl 6 =2 since there are 2 symbol changes in
’

Xil),...,Xél) or equivalently 2 axis-crossings in Zl,...,Z6. Tt is in-
teresting to observe that while D1 6 is the number of crossings, D2 6 is

the number of peaks and troughs in Zl""’z6'

The fact that the correlation structure in {Zt} is completely deter-

mined by the sequence

(05, ng-1

is due to the basic relation

pl = cos(- 1, N) (1)
N-1

k
whose extension is given in (2) by considering the first correlation in V Zt’
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(2k)+ {(2k)+(2k)} + ( l)k
- p - ... - )
cos("EDku,N) S U AT Pl )
( k) —2p1(k—l) +...+(-1) Zpk
From (1} and (2) we can determine Pys Pys Py - e recursively. (See
Kedem and Slud (1981).) (2) can also be written as
4 2k
f cos(w) (sin Lw) " dF (w)
TED
k+1,N\ _ “-m
cos = (3)
N-1 T 2k
(sin ks w) " "dF(w)
-

which is referred to as the higher order crossings spectral representa-
tion and relates the sequénce {EDj N} to F. This spectral representation
bl

has been recently studied in Kedem (1984) in some detail, where it was

shown that

< < < (N-
EDI,N = EDZ,N < ... T (N-1). (4)
It follows that {EDj N}?;l is a monotone increasing and bounded sequence

and therefore converges. It can be shown that

__._j_’N. > (A)*, j > (5)

where w* is the highest point in the support of F, that is, the highest

frequency in the spectrum. Therefore

*
w

< T oee. T (N-1). 6

EDl’N EDZ,N = 7 (1) (6)
N
: : * * : RS
In practice most series contain noise and w” = %. When " =7 the in- Y
-

equalities in (4), (6) are strict. It was shown in Kedem and $lud (1982)
that when 7 is in fact included in the support of F then the actual N
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sequence {D',N} is monotone increasing provided N is sufficiently large.

Now it is this monotone property of HOC which we would like to
utilize. More precisely, we wish to demonstrate that the initial rate
of increase in the Dj,N as j=>« 1is rather fast and carries discrimina-
tory information as different processes display different rates of in-
crease in the Dj,N for small j and fixed N. As j increases this
discriminatory potency decreases rapidly and similar rates are displayced
by many different series., In this sense only very few Dj,N are needed
in achieving effective discrimination.

It should be noted that from (2), (3), the information contained
in {EDj,N}§=1 is equivalent to that in {pj} and consequently that in F,
the normalized spectral distribution function. But the information
manifested by the EDj,N presents a - Iferent angle of view and another
way for the interpretation of stationary time series. HOC provide an-

other dimension in time series analysis, which addresses the oscillatory

content in time series directly by counts of visual [leatures.
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3. An Approximation to the Variarce of HOC

by S

-

As we shall restrict our attention to the rate of increase in HOC

it is necessary to determine beforehand the variance of D , k=1,2,...

g k,N

i% In general this variance is a function of 4'th order orthant probabili-
5

"ol ties wnizh are not easily accessible (see Reed (1983)). 1t has been ob-~
f: served however that in many cases the dependence in the {dik)} for low k
;E is rather weak as expressed by very low correlations, unless the original
a':‘

series {Zt} displays extremely large absolute correlations. Thus as a
first approximation we suggest treating {dik)} as a binary Markov chain.
This simplification leads immediately to a computable expression for
Var(Dk’N) which, as we shall see, provides a rather close approximation
to the true variance,

Define

A 2 P(ng) =1 \x(k) 1)

K - k K
P e’ “t-j

1
@]
C
~
~
~~
<]
o~
<
™~
N’

Then from (1) or (2) we have

Il o

(k)

=
TR T L

Observe that because of (1), p

()}

is precisely given by (2). 'the two

parameters which specify {d are thus given by

p() = pa® 2y = 1A (8)
¢ 1
K k (k RIS by
o = p@® arpa oy - 2 (9)
201 -2
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Therefore using standard arguments from the theory of Markov chains (sce
Karlin and Taylor (1975), Ch. 2) we have the approximation owing to the

= (k) (k)
fact that Dk,N d2 + ... + dN .

(k) (k) , (k) (k)
Var(p_ ) - n-1yptR ) 4 2e e T op ) {(N—l) -V, N} (10)

(l-v(k))
where
- (k) \ N-1
v = (k) 1 - .V_“ij’_g_)_ ' (1_\,(k))
k,N o9 (k)
q
) _. (K . - . _
and q =1-p . Usually Vk N 18 negligible compared with N and may
be omitted. Thus, a useful approximation to Var(Dk N) is
*
PROINON
Var (D ) ~ (N—l)p(k)q(k) 1-2p " +v_ . (11)
k,N 1 - v(k)

From a given sequence 01,02,...,QK we compute Var(D Y, k=1,...,

k,N

K-1 as follows.

(i) Obtain 3{k)

S A A et (N R N R

from (2), k=0,1,..,,K-1.

p A T - s -
1 2k 2k
( )-2,31( ) +... +(—l)k2pk
k k-1
Then pék) is given by
pék) = -1+ ZOfk) - 20§k+l)(j —pfk)).
(ii) Obtain Xik), Ask) from (7), k=1,...,K-1.
(k) _ 1 1 . -1 (k-1) (k) _ 1 =1 (k-1)
Al =5 + ; sin N . AZ ) + , sin 0,
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o (iity obtain PV, V() from (8), (9), Kk=1,...,Kk-1

(k) (k)
2%1 +A2

P L0

2(1-Afk))

(iv) Substitute in (10) to obtain Var(D

k,N)’ k=1,--.,N—l.

The above algorithm results are compared in what follows with actual

¢stimates in the estimation of Var(D ), j=1,...,6 for several

, 1000
series. To apply the algorithm one needs to supply as input only Ppoeeeaby
and N. (A computer program which takes as input pl,...,p7,N and gives as
output E(Dj,N) and Var(Dj’N) is available upon request.) When an hypothe-
sized model is entertained these parameters are usually available as is

the case for example when the hypothesized process is white noise or any

specific autoregressive moving average. The experimental results were ob-

tained from 100 independent realizations of size N=1000 each and are

summarized in Tables 1, 2, 3. Note that ED ,1000 is available exactly k

and does root depend on the Markov assumption. The tables also compare 4

ED, with their estimates as a check on the simulation results. It k

j, 1000 q

'

t : . articu- :

is seen tha FD , 1000 and ED ,1000 are very close throughout [n particu ;
1

lar, {var D 1’)00}/2 obtained from (l0) agrees well with actual estimates E

o

obtained from these 100 realizations. We note that throughout our simu-

EIU
.

- lation vk,N in (10) ranged in value from 0,663 to 1.247 but most often

FZ its value was around 0.9, which is very small comparcd with N =1000. In

~

%g specifying a model we use the notation as in Box and Jenkins (1970). For i
Eg example, AR(1l) with parameter ¢ means Zt = wzt—l + Ups but MA(l) with -
Egi parameter 0 means Zt = ut - Out~l‘ where ut are N(O,Ui) independently dis-

L4

3! tributed. It should be noted that all our results concerning HOC are scale

. 2, .
free so that the actual magnitude of OU is not important.
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N FIRST ORDER MODELS
. Series j EDj,lOOO EDj,lOOO {var Dj,lOOO} {var Dj,lOOO}
[;{ Zrom (10) from 100
- ___realizations_
':; White 1 500 497 15.81 15,96
Noise 2 666 666 13.15 13.63
3 732 732 12.16 12.53
4 769 770 11.57 11.49
5 794 795 11.18 11.05
6 &13 814 10.82 10.00
AR(1) 1 333 333 15.74 15.58
$=0.5 2 580 582 14.00 15.03
: 3 685 686 12.72 13.11
4 740 740 12.00 12.08
5 774 774 11.49 11.23
6 797 796 11.09 10.00
MA(1) 1 369 371 14.17 14.59
8=-0.5 2 553 551 12.44 12.27
3 640 639 11.91 12.48
4 694 693 11.66 12.22
5 732 731 11.44 11.40
6 759 759 11.22 11.02
i,
Table 1. Comparison of {var Dj,lOOO}z from (10) and the estimate

obtained from 100 independent realizations each of size
1000 given in the last column. EDj,lOOO are rounded to

the nearest integer.
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L 10
SECOND ORDER MODELS
Seri i ED ED {var D V2 (la s
eries J 3,1000 5,1000 V8T Diyg00f " VAT D650
from (10) from 100
realizations
AR(2) 1 333 333 12.00 10.83
s =0.75 2 460 460 11.87 11.07
1 : 3 562 562 12.40 12,58
¢2 =-0.5 4 646 649 12,65 13.58
5 708 709 12,25 12.57
6 751 751 11,79 11.91
MA(2) 1 342 343 18.33 17.76
6 -—_o.5 2 648 649 17.66 18.06
1 : 3 782 784 13.82 13.71
92 =-0.8 4 835 836 11.40 10.49
5 857 858 10,24 9.56
6 868 869 9.74 8.71
AR(2) 1 424 425 9.64 9.67
o =04 2 48 485 9.38 9.13
1 : 3 536 537 10.29 10.81
¢2 ==-0.7 4 594 594 11.27 12.72
5 651 652 11.87 12.02
6 702 701 12.04 11.34
1
Table 2. Comparison of {Var Dj 1000}2 from (10) with the estimate
obtained from 100 independent realizations of size 1000

given in the last column, EDj,lOOO are rounded to the

nearest integer.
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n
Ei
ﬁx MIXED MODELS
o~
§ Seri i ED ED {v Y2 (fa }d
eries J 3,1000 35,1000 ar D; 1000 ar Dy 1000
e from (10) from 100
i . .
o - ——._._realizations
ey
:;ﬁ ARMA(:,.) 1 552 552 14.62 14.74
J 0=0.5 2 679 679 12.96 12.87
’ 3 737 737 12.09 12.05
0=0.7 4 773 772 11.27 11.52
5 797 797 10.70 11.12
6 814 814 10.15 10.80
ARMA(1,1) 1 235 234 13.17 12.67
$=0.5 2 432 433 11.59 12.07
. 3 544 544 11.42 11.25
8 =-0.7 4 615 615 11.04 11.07
5 663 665 11.26 11.05
6 698 699 10.65 11.03
ARMA(2,2) 1 884 883 10.04 10.51
¢, =-1.4 2 897 897 9.20 9.53
¢, ==0.5 3 903 903 8.84 9.01
6, =0.2 4 908 908 8.60 8.50
8, =0.1 5 911 911 8.43 8.47
6 914 914 8.29 8.38
1
Table 3. }? from (10) with the estimate

s
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R o 0 N
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Xadl

Comparison of {Var Dj,lOOO

obtained from 100 independent realizations of size 1000

given in the last column. E are rounded to the

Dy 1000
nearest integer.
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4. Probability Limits for HOC

e
o
.

The asymptotic distribution of Dk N* 3s N+, can be found under

standard moment conditions without recourse to the Markov assumption

which we only needed in getting an approximation to the variance of HOC.
- . ky .

For any finite moving average series {Zt}’ {dt} is m-dependent for some

finite m which implies (Diananda (1953)) that the asymptotic distribu-

tion of D s N-»~ is normal. More generally, since {Zt} is Caussian

k,N 2

the condition Z lpkl < o implies the asymptotic normality of Dk N for

any finite k. The proof of this fact uses a method suggested by Malevich

(1969) and Cuzick (1976) and was used in Kedem (1980), Ch. 7, in deriving

The extension to D is immediate

the asymptotic distribution of Dl,N' kN

and will not be reproduced here. It follows that when Py is absolutely

summable Dk N is asymptotically normal with approximate variance given
by (10), and hence approximate 95% probability limits for nk,N are
(k) 's
(N-1)p + 1.96{var D} (12)
(k)

where Var(Dk N) is given by (10), and p is as in (8). (12) provides
a graphical means for assessing the similarity or dissimilarity between

processes as expressed by their oscillatory information by way of higher

order crossings. Several examples follow.

Table 4 gives the probability limits (12) fér three processes whosc
data are given in an appendix in Priestley (1981). 1Tt is seen that the
HOC obtained from these records with N=450 fall well within the proba-
bility limits. The graphical display of the HOC and the limits (12) of
Gl these data aregiven in Figure 1, and show graphically the similarity of
the observed data and the hypothesized processes. At the same time the

figure shows the dissimilarity or the distance of the particular AR(2)
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2;& and ARMA(2,2) under consideration from white noise, and also the dis-
o
K. similarity of these AR(2) and ARMA(2,2). 1In particular, the rates of

N increase in the Dj 450 displayed by the three processes are different

Eﬁ and serve as a fast discrimination feature.

Rounded 95% Rounded

&ﬁ . probability limits hDj,ASO Dj,ASO

AN 203 246 225 221

" 282 317 299 299

‘ 313 345 329 328

~. 330 361 346 348
‘ib 342 372 357 355

AN 351 380 365 363

5& a) White noise: Zt =u,

i, " T )

o 178 204 191 190

j? 205 230 217 214

o~ 227 255 241 253

I 252 282 267 278

277 308 292 300

g 299 331 315 314

o b) Zt = O.ZoZt_l - 0.7Zt_2 +u,

5 e

.

o 384 411 397 398

) 391 415 403 403

o 394 418 406 407
O 397 419 408 411 j
rf* 398 421 410 411 ‘
X * 400 422 411 411 :
el _ _ _ _

= c) Zt = -1.4Zt_1 O.SZt___2 + u, O.2ut_‘1 O.lut_2 \
*-I hamsed i ‘
N Table 4. Observed D, in records given in an Appendix in }
o ——— j,4a50 |
Pt Priestley (1981). The ARMA(2,2) series c) contains a |
Sy {
'i; missing observation which was replaced by 0.0. |
,ﬁj u_~ N(0,1), independent. :
X t

%

-’.'.
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AN ORI o f g et
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REMAC2, 20 |
RMAL2, 2 APMAC2, 2

490 _ .

e me e g e cae e e e

1 2 3 4 5 é
. A e JR— V. ! DU ¥ []
a) Observed Dj,450 from white b) Observed Dj,bSO from an
noise and their theoretical AR(2) series and their
limits (12). theoretical limits (12).
APHMACZ .2y LIMITS
GBE T e T T T e e e
3509 =T
208 Ty I
s d __-"-" -
gse T
S SRR
zpn -
L& 23 4 5. & __,
»
o
g;r ¢) Observed Dj,ASO from an ARMA(2,2) series aud
®. their theoretical limits (12).

Figure 1. HNOC representation for the three series in Table 4. In each
case the theoretical limits (12) capture the correct curve

obtained from observed Dj 450 from the indicated series.

(The dark lines mark the probability limits,)
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N Our next example concerns a HOC diagnostic check for time series
l‘...
N models as applied to the temperature series C in Box and .Jenkins (1976).
[ Our first step is to see whether the centered series and its first dif-
[
if ference are close to being white noise. A quick glance at Figure 2-(a)
r B
Sy shows that the series and its difference are far from being white as
L their HOC do not fall within the white noise limits with N=212. On
o the other hand, the HOC of the fitted model (VZ, = 0.8297 _, + u )
t
b suggested by Box and Jenkins (1971), p. 293, are well within the proba-
e bility limits (12) as seen from Figure 2-(b). The residuals HOC are
ﬁl given in Figure 2-(c) and are shown to fall well within the white noisc
o limits except for Pl 510 which is still very close to being "in". Thus
5{ based on the oscillatory properties of the differenced series and the
fy corresponding residuals it is seen that the fitted model is reasonable.
L
-
q\_‘-. s 1 P P o : " he
;#; J 9Sﬁﬂi;?1t§ii:r 2§f1§im;ifofg; 3’212 from Dj,212 from Dj.212 from the
,$7 w nois ’ : Zt-Z VZt residuals
} VAt - 0.82VAt_]
A,
o5 1] 91 18 28 54 5 48 89
it) 2 129 153 98 125 48 105 139
}‘3' 3| 143 166 129 153 105 137 155
. 4 152 173 144 166 137 153 168
i 5 158 178 152 173 153 166 172
. 6 162 182 158 178 166 172 171
Ve S E
':jl - Table 5. Observed HOC from the temperature series C in Box & Jenkins
. (1976) and probability limits for two models. (N=212). The
®: HOC from VZ¢ fall within the AR(1) limits. The residuals HOC
suggest that the residuals very much resemble white noise.
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a) HOC from zt-E' and V2

fall outside the white

noise limits.
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AFELL )y LIMITS

17s

156 WHITE .
I EL

AN

1 = 2 4 5 £

IR WY IS UEIPIID SR |

b) HOC from VZt fall inside the
limits (12) under the model

VZ, = 0.82Vz | +

1 Ut.

50 DZv T 22070 T -1
25
1 2 z 4 b 3
— e i e b e e wme —m e [ESUEEYU KUY P PSR PRINOWINIPRUNAY PRSI §

¢) HOC of the residuals

series resemble very

much HOC of white noise.

Figure 2.
(1976) with N=212.
limits.)

e S e smar A e

HOC analysis of the temperature sceries C in Box & Jenkins
(The dark lines mark the probability
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4 Our last example concerns periodic data plus noise. In many appli-
WSS
o cations a major problem is whether an observed series is made of noise
';, only or of signal plus noise. The oscillation in periodic signals plus
AP

:‘ noise is usually different from the oscillation displayed by white noise
5 and czn be captured very well by HOC. Consider the sunspot series given
e, and analyzed in Anderson (1971). It is well established that this scries
l*.

'E contains several significant periodic components, and from our point of
5 view it is interesting to measure the deviation of this series from pure
- white noise as depicted by higher order crossings. By appealing to the
;5 limits (12) with N=155 we can see from Figure 3 that the series does
}Q indeed contain a "signal”™ and the hypothesis of white noise is rejected.
B That is, the sunspot series does not oscillate as white noise.

.

i 95% probability D, from
. . j»155

- limits for white noise 7 -7

-.._\ t e

- 1 65 89 31

- 2 93 113 36

' 3 103 122 81

b 4 110 128 107

o 5 114 131 119

2 6 117 134 121

Table 6. Observed HOC from the sunspot series

) (N=155) in Anderson (1971) and proba-
~ bility limits for white noise. The
hypothesis ¢ f{ noise is rejected.

o
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spot series.

outside the white noise limits.

R T TR T Y ST T e

18

LIMITS

a2 3 4 ]

T

R e PO VORI WU U U —

from zt~52 derived from the sun-
The first four HOC fall
(The

dark lines mark the probability limits.)
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5. Some Power Calculation

In many cases D1 and D2 alone are capable of discrimination between

time serics models. However, there are many examples in which the later

1’ D2 fail. 1In order to illustrate this point we

consider several examples of autoregressive moving average models where

Dj do the job while D

the hypothesis is that of white noise. At the same time the examples
indicate the power of our graphical method obtained from 50 independent
series each of length N =450. 1In each case we bring in the results of
10 realizations in the form of binary row vectors of length 6. Lach
realization produces Dl,ASO""’D6,450 and when a certain Dj,&SO falls
outside the probability limits (12) for the white noise case, it is in-
dicated by "1" for success. Otherwise this is indicated by "0". Thus
5 D6 fall outside the limits (12) for the

3 D4 fall inside these limits. Clearly, for

series which are not white noise we expect to see many l's. The closer

110011 means that D D D

2’

white noise case, while D

1)

the process is to white noise the harder is the discrimination problem
and the ratio of 0's increases. It is seen from Figure 4 that there

are series which are far from being white but their actual axis-
crossings behave as those of white noise. On the other hand, the
difference in oscillation is captured by higher order crossings as seen
in particular from (g) and (i). The power is seen to increase with more

significant parameters as is well expected.
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ARMA(1,1), ¢, =.1, 8, =-.1

h)

.3, power

0.86

P

power

in

Ten typical binary vectors obtained from l)i 450" j=1,..

Figure 4.

relation to the white noise limits from (lé).

The power was esti-

1 means corresponding D,
¢ ‘ & Vi 450

mated from 50 such binary vectors.

Mherwise 0 is recorded.

limits.
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